Sub-finsler Structures from the Time-optimal Control Viewpoint for Some Nilpotent Distributions
نویسندگان
چکیده
In this paper we study the sub-Finsler geometry as a time-optimal control problem. In particular, we consider non-smooth and non-strictly convex sub-Finsler structures associated with the Heisenberg, Grushin, and Martinet distributions. Motivated by problems in geometric group theory, we characterize extremal curves, discuss their optimality, and calculate the metric spheres, proving their Euclidean rectifiability.
منابع مشابه
Geometric Modeling of Dubins Airplane Movement and its Metric
The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...
متن کاملA Pseudo-group Isomorphism between Control Systems and Certain Generalized Finsler Structures
The equivalence problem for control systems under non-linear feedback is recast as a problem involving the determination of the invariants of submanifolds in the tangent bundle of state space under fiber preserving transformations. This leads to a fiber geometry described by the invariants of submanifolds under the general linear group, which is the classical subject of centro-affine geometry. ...
متن کاملOptimal control of nilpotent systems: a sub-Riemannian approach
We present a general framework for the optimal control of driftless nonlinear systems defined by means of distributions of smooth vector fields that generate nilpotent Lie algebras. A smooth varying inner product on the planes of the distribution, yields the energy functional that allows to approach the optimal control problem as a sub-Riemannian geodesic problem. This class of systems is relev...
متن کاملOn 2-step, corank 2 nilpotent sub-Riemannian metrics
In this paper we study the nilpotent 2-step, corank 2 sub-Riemannian metrics that are nilpotent approximations of general sub-Riemannian metrics. We exhibit optimal syntheses for these problems. It turns out that in general the cut time is not equal to the first conjugate time but has a simple explicit expression. As a byproduct of this study we get some smoothness properties of the spherical H...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کامل